Object representation in the ventral premotor cortex (area F5) of the monkey.
نویسندگان
چکیده
Visual and motor properties of single neurons of monkey ventral premotor cortex (area F5) were studied in a behavioral paradigm consisting of four conditions: object grasping in light, object grasping in dark, object fixation, and fixation of a spot of light. The employed objects were six different three-dimensional (3-D) geometric solids. Two main types of neurons were distinguished: motor neurons (n = 25) and visuomotor neurons (n = 24). Motor neurons discharged in association with grasping movements. Most of them (n = 17) discharged selectively during a particular type of grip. Different objects, if grasped in similar way, determined similar neuronal motor responses. Visuomotor neurons also discharged during active movements, but, in addition, they fired also in response to the presentation of 3-D objects. The majority of visuomotor neurons (n = 16) showed selectivity for one or few objects. The response was present both in object grasping in light and in object fixation conditions. Visuomotor neurons that selectively discharged to the presentation of a given object discharged also selectively during grasping of that object. In conclusion, object shape is coded in F5 even when a response to that object is not required. The possible visual or motor nature of this object coding is discussed.
منابع مشابه
RAPID COMMUNICATION Object Representation in the Ventral Premotor Cortex (Area F5) of the Monkey
Murata, Akira, Luciano Fadiga, Leonardo Fogassi, Vittorio The results showed that a high percentage of F5 taskGallese, Vassilis Raos, and Giacomo Rizzolatti. Object represenrelated neurons responded to the presentation of 3-D objects, tation in the ventral premotor cortex (area F5) of the monkey. J. most of them showing a remarkable object specificity. The Neurophysiol. 78: 2226–2230, 1997. Vis...
متن کاملObserving others: multiple action representation in the frontal lobe.
Observation of actions performed by others activates monkey ventral premotor cortex, where action meaning, but not object identity, is coded. In a functional MRI (fMRI) study, we investigated whether other monkey frontal areas respond to actions performed by others. Observation of a hand grasping objects activated four frontal areas: rostral F5 and areas 45B, 45A, and 46. Observation of an indi...
متن کاملActivations related to "mirror" and "canonical" neurones in the human brain: an fMRI study.
In the macaque monkey ventral premotor cortex (F5), "canonical neurones" are active when the monkey observes an object and when the monkey grasps that object. In the same area, "mirror neurones" fire both when the monkey observes another monkey grasping an object and when the monkey grasps that object. We used event-related fMRI to investigate where in the human brain activation can be found th...
متن کاملCaudal ventral premotor cortex in monkeys and humans
Recent data show that the ventral premotor cortex in both humans and monkeys has motor and cognitive functions. The cognitive functions include space perception, action understanding and imitation. The data also show a clear functional homology between monkey area F5 and human area 44. Preliminary evidence suggests that the ventral part of the lateral premotor cortex in humans may correspond to...
متن کاملRepresentation of manipulable man-made objects in the dorsal stream.
We used fMRI to examine the neural response in frontal and parietal cortices associated with viewing and naming pictures of different categories of objects. Because tools are commonly associated with specific hand movements, we predicted that pictures of tools, but not other categories of objects, would elicit activity in regions of the brain that store information about motor-based properties....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 78 4 شماره
صفحات -
تاریخ انتشار 1997